图像信噪比(signal-to-noise,简称SNR)

信噪比
       SAR 系统的另一个重要参数是图像信噪比(signal-to-noise,简称SNR)。SAR 信号的 SNR 可以由以下“雷达方程”导出。雷达方程表明,雷达接收功率是发射功率、雷达与目标之间的距离以及许多雷达系统和散射体变量的函数。
 
       为建立图像质量与雷达发射功率之间的定量关系,一般将雷达方程表示成图像 SNR 的形式,如果图像包含分布目标(一般指杂波),则 SNR 为
 
       式中,  为雷达平均发射功率,  为天线增益,  为雷达信号波长,  为地面目标的归一化后向散射系数,  为光速,  是雷达与反射体之间的距离,  为玻尔兹曼常数,  为接收机温度,  是发射信号带宽,  是接收机噪声,  为系统损耗,  为平台速度,  为波束入射角。
 
平均发射功率:
       其中,  峰值发射功率,  雷达  ,  发射脉冲持续时间。
 
       天线增益是俯仰角和方位角的函数。计算俯仰向的增益时需要将雷达与目标的距离考虑在内;方位向的增益则是合成孔径角度范围内天线方向图的加权平均。  是标称工作温度下理想接收机的热噪声,  是实际接收机相对于理想接收机的附加噪声,  是信号在传输路径中的损耗。
 
       当对孤立点目标成像时,由于点目标的尺寸近似于或小于雷达分辨率,因此它的大部分能量集中在图像的一个点上,点目标 SNR 为
 
       其中,  为目标的雷达截面积,  为斜距分辨率,  为方位向分辨率。
 
       这里使用的是目标的实际(没有归一化)雷达截面积,  和  是数据处理后的分辨率。利用这些公式,可以计算出点目标信杂比或点目标与杂波及噪声之和的比值。
 
       SAR 的 SNR 与一般雷达 SNR 的主要区别在于对距离  的依赖关系不同。根据熟知的平方反比律(即能量均匀分布于整个半径为  的球面),由于雷达能量在发射和接收的传播中都经过了  的衰减,一般雷达 SNR 正比于  。
 
       相比而言, SAR 处理器在方位向将回波能量按正比于斜距  的长度进行积分,因此消掉了分母中的一个表征能量传播关系的  ,导致 SAR 的 SNR 正比于  。对 SAR 的 SNR 公式的理解并不能帮助我们更好地成像,但是  法则将会用于图像的辐射校正。
 
距离徙动
 
       合成孔径处理是针对大量回波脉冲进行的。由于在合成孔径内传感器的移动,雷达与目标的距离随时间变化,这个变化所引发的回波数据的多普勒频移构成了合成孔径处理的基础。然而这种距离变化同时也导致了距离徙动(range cell migration,简称 RCM)现象,使数据处理变得更复杂了。
 
       雷达接收到回波以后,就对数据进行采样和存储。数据处理是一个二维过程,但一般分成距离向和方位向两个互相独立的一维处理过程。当回波能量在一个合成孔径时间内沿距离向没有明显的变化时,这种分离是非常简单的。这里的“明显”依赖于距离向的采样密度。
 
       如果回波能量分布沿距离向的变化(或称距离徙动)超过了一个距离采样(或距离单元),就认为这种变化是“明显”的,在成像处理时必须加以考虑。通常处理过程中的 RCM 校正是单独进行的,称为距离徙动校正(range cell migration correction,简称 RCMC)。